

 From Concurrent Constraint Programming to Concurrent Hierarchical Graph Rewriting

Kazunori Ueda, Waseda Univ. (Joint work with Norio Kato)

October 2004

Copyright (C) 2002-2004 Kazunori Ueda

LMNtal (pronounce: "elemental")

 $\mathcal{L} = \text{logical links} \\ \mathcal{M} = \text{multisets/membranes} \\ \mathcal{N} = \text{nested nodes} \\ ta = \text{transformation} \\ \ell = \text{language}$

append in LMNtal

★ cf. Guarded Horn Clauses (GHC) version

append(X0,Y,Z0) :- X0=[A|X] | Z0=[A|Z], append(X,Y,Z). append(X0,Y,Z0) :- X0=[] | Y=Z0.

No distinction between append and c(ons)
 cf. (small fragment of) CHR, Interaction Nets

Design goals of *LMNtal*

- A "Turing Machine" for universal computing environments (from wide-area to nanoscale)
- Unifying model of concurrency
 - ★ e.g., processes = messages = data
- Simple and versatile
 - ★ Computation is direct manipulation of graphs
 - **★** Membranes express multisets and locality
 - ★ Allows programming by self-organization
- Implementation (with interface to Java) available
 - * http://www.ueda.info.waseda.ac.jp/Imntal/

Running, tracing and visualizing append

Background

Concurrent Logic Programming (early 1980's)

- ★ Channel mobility using logical variables
- ★ Various type systems (including linearlity) and implementation experiences
- Concurrent Constraint Programming (late 1980's)
 - ★ Generalization of data domains (FD, multisets, ...)
- CHR (Constraint Handling Rules) (early 1990's)
 - ★ Allows multisets of goals in rule heads
 - ★ An expressive multiset rewriting language
 - ★ Many applications (esp. constraint solvers)
 - Lacks reaction control mechanisms such as termination detection and hierarchies

Models and languages with multisets and symmetric join

- Petri Nets (1962)
- Production Systems and RETE match
- Graph transformation formalisms
- CCS, CSP
- Concurrent logic/constraint programming
- Linda
- Linear Logic languages
- Interaction Net
- Chemical Abstract Machine, reflexive CHAM, Join Calculus
- Gamma model
- Constraint Handling Rules
- Mobile ambients
- P-system, membrane computing
- Amorphous computing
- Bigraphical reactive system (2001)

Example 2: N-to-1 stream communication

Example 2: N-to-1 stream communication

★ The number of free links in { } remain unchanged

Elements of *LMNtal* (1)

1. Nodes (= atoms) with links

- Links are linear, zero-assignment logical variables
 - linear = occurring twice (1-to-1 comm.)
 - logical = link identity changes after message sending (↔ π-calculus)
 - zero-assignment = not instantiated (+ logic programming)
 - private
 - not directed (cf. chemical bonds)
- ★ Links of a node are ordered

Elements of *LMNtal* (1)

★ Links are used

(a) to represent (private) communication channels

- (b) to represent data structures (= graphs)
- (c) to find partners in multiset rewriting

O(1) if linked

- \bullet can be O(n) if not linked
- (d) to represent hyperlinks (using membranes; see next slide)

Elements of *LMNtal* (2)

2. First-class multisets (using membranes)

- Not many languages feature multisets as first-class citizens
- ★ Used for:
 - representing records (feature structures)
 - localization and logical management of computation
 - cf. ambients, join calculus, Unix processes

Elements of *LMNtal* (3)

3. Rewrite rules

- ★ Can be put in a membrane to realize
 - Iocal reaction
 - process mobility
- ★ Design issue: proper handling of free links
 - cf. graph grammars and transformation, logic programming

Syntax: preliminaries

- Two presupposed syntactic categories:
 - ***** X: links (or link variables)
 - In concrete syntax, start with capital letters
 - * p: names (including numbers)
 - In concrete syntax, use identifiers different from links
- The name "=" (called a connector) is the only reserved symbol in LMNtal

Syntax of *LMNtal* processes

P ::= 0			(null)	Not in Flat LMN1	tal	
		$p(X_1,\ldots,X_m)$	(m≥0)	(atom)		
		P, P		(molecu	le)	
		{ <i>P</i> }		(cell)		
		T :- T		(rule)		

- Link condition: Each link in P (except those in reaction rules) occurs at most twice.
 - ★ Free link of P = link occurring only once
 ★ P is closed = has no free links

Syntax of *LMNtal* process templates

					Not in	
T ::=	0			(null)	Flat LMN [•]	tal
	$p(X_1,\ldots,$	X _m)	(m≥0)	(atom)		
	Τ, Τ			(molec	ule)	
	{ <i>T</i> }			(cell)		
	T :- T			(rule)		
	@p			(rule co	ontext)	
	$p[X_1,$	$,X_{\rm m} A]$	(m≥0)	(proces	ss contex	xt)
	$p(X_1,\ldots)$,* <i>X</i> _m)	(m > 0)	(aggre	gate)	
(resid	ual args)	A ::=	[]	(empty	/)	
			*X	(bundle	e)	

Process contexts, examples

{exch, \$a[X,Y]} :- {\$a[Y,X]}

{kill, \$a[|*X]} :- killed(*X)

Process contexts, examples

cp(S,S1,S2), {i(S),\$p[|*P]} : {i(S1),\$p[|*P1]}, {i(S2),\$p[|*P2]}, cp(*P,*P1,*P2)

Syntactic sugar

c(A1,X1,X0), c(A2,X2,X1), c(A3,X3,X2), n(X3)

 $\equiv c(A1,c(A2,c(A3,n)),X0)$

 \equiv X0=Y, c(A1,c(A2,c(A3,n)),Y)

 \equiv X0=c(A1,c(A2,c(A3,n)))

Structural congruence (\equiv)

(E1)
$$\mathbf{0}, P \equiv P$$

(E2) $P, Q \equiv Q, P$
(E3) $P, (Q, R) \equiv (P, Q), R$
(E4) $P \equiv P[Y/X]$ if X is a local link of P
(E5) $P \equiv P' \Rightarrow P, Q \equiv P', Q$
(E6) $P \equiv P' \Rightarrow \{P\} \equiv \{P'\}$
(E7) $X = X \equiv \mathbf{0}$
(E8) $X = Y \equiv Y = X$
(E9) $X = Y, P \equiv P[Y/X]$
if P is an atom and X is a free link of P
(E10) $\{X = Y, P\} \equiv \{P\}, X = Y$
if X is a free link of P and Y is not a free link of P

Reduction semantics

$$(R1) \xrightarrow{P \to P'}_{P, Q \to P', Q} (R2) \xrightarrow{P \to P'}_{\{P\} \to \{P'\}}$$

$$(R3) \xrightarrow{Q \equiv P \ P \to P' \ P' \equiv Q'}_{Q \to Q'}$$

$$(R4) \ \{X = Y, P\} \to X = Y, \{P\}$$

$$X \text{ and } Y \text{ are free links of } (X = Y, P)$$

$$(R5) \ X = Y, \{P\} \to \{X = Y, P\}$$

$$X \text{ and } Y \text{ are free links of } P$$

$$(R6) \ T\theta, (T:-U) \to U\theta, (T:-U)$$

$$(R2) \ \overrightarrow{P \to P'}_{\{P\} \to \{P'\}}$$

Reduction semantics

- Can p(A,A) be reduced using p(X,Y) := q(Y,X)?
 - ★ The rule can't be α-converted to the form p(A,A) :- ...
 - However, because p(A,A) is equivalent to p(A,B), A=B (B a fresh link), it can be reduced as:

p(A,A) $\equiv p(A,B), A=B$ $\rightarrow q(B,A), A=B$ $\equiv q(A,A)$

Example 3: circular data structures

Bidirectional circular buffer:

$$b(S, L_n, L_0), n(A_1, L_0, L_1), ..., n(A_n, L_{n-1}, L_n)$$

★ S acts as an interface link

★ cf. Shape Types

Example 4: asynchronous π -calculus

Example 5: map function

Extension: termination detection

Syntax, expanded

 $P ::= ... | \{P\}/$ (quiet cell)

 $T ::= ... | \{T\}/$ (quiet cell)

Structural congruence, expanded

 $\{P\} \equiv \{P\}/ \quad \text{if } P \not\rightarrow$

- ★ An irreducible cell can show the flag "/"
- Irreducibility of a cell can only be checked from outside the cell

Future Work

- Language
 - ★ Constructs for distributed and real-time computing
- Foundations
 - ★ Type systems
 - ★ Theory of computational resources
 - ★ *Human-oriented* program verification
- Implementation
 - ★ Optimizing complation of sequential core
 - ★ Parallel and distributed implementation
 - ★ Interoperability
 - ★ Integration with static analysis

➔ "Theory meets practice, logic meets physics."

Conclusions

■ The "four elements" of *LMNtal* are:

- ★ (logical) links,
- multisets/membranes,
- \star (nested) nodes, and
- \star transformation.
- Inspired by communication using logical variables, we have designed a simple language model for the unified treatment of processes, messages and data.