
FJWCP-1

LMNtal LMNtal
― From Concurrent Constraint Programming

to Concurrent Hierarchical Graph Rewriting

Kazunori Ueda, Waseda Univ.
(Joint work with Norio Kato)

October 2004

Copyright (C) 2002-2004 Kazunori Ueda

FJWCP-2

LMNtal (pronounce: “elemental ”)

L = logical links

M = multisets/membranes

N = nested nodes

ta = transformation

l = language

FJWCP-3

Example 1: append

n

6

c

7

c

8

c

9

c n

a

1

c

2

c

3

c

5

c

4

cb

a c ac a n =

A A
Z0 Z0

Y Y

X0 ZX X

Y

Z0 X0

Y

Z0

a

c

n

: append

: cons

: nil

FJWCP-4

Example 1: append

n

6

c

7

c

8

c

9

c n

a

1

c

2

c

3

c

5

c

4

cb

a c ac a n =

A A
Z0 Z0

Y Y

X0 ZX X

Y

Z0 X0

Y

Z0

a

c

n

: append

: cons

: nil

FJWCP-5

Example 1: append

1

c

2

c

3

c

5

c

4

c =b

6

c

7

c

8

c

9

c n

a c ac a n =

A A
Z0 Z0

Y Y

X0 ZX X

Y

Z0 X0

Y

Z0

= ≡

FJWCP-6

Example 1: append

1

c

2

c

3

c

5

c

4

cb

6

c

7

c

8

c

9

c n

a c ac a n =

A A
Z0 Z0

Y Y

X0 ZX X

Y

Z0 X0

Y

Z0

= ≡

FJWCP-7

append in LMNtal

append(X0,Y,Z0), c(A,X,X0) :-
c(A,Z,Z0), append(X,Y,Z)

append(X0,Y,Z0), n(X0) :- Y=Z0

cf. Guarded Horn Clauses (GHC) version
append(X0,Y,Z0) :- X0=[A|X] |

Z0=[A|Z], append(X,Y,Z).
append(X0,Y,Z0) :- X0=[] | Y=Z0.

No distinction between append and c(ons)
cf. (small fragment of) CHR, Interaction Nets

FJWCP-8

Design goals of LMNtal

A “Turing Machine” for universal computing
environments (from wide-area to nanoscale)
Unifying model of concurrency

e.g., processes = messages = data
Simple and versatile

Computation is direct manipulation of graphs
Membranes express multisets and locality
Allows programming by self-organization

Implementation (with interface to Java) available
http://www.ueda.info.waseda.ac.jp/lmntal/

FJWCP-9

Running, tracing and visualizing append

FJWCP-10

Background

Concurrent Logic Programming (early 1980’s)
Channel mobility using logical variables
Various type systems (including linearlity) and
implementation experiences

Concurrent Constraint Programming (late 1980’s)
Generalization of data domains (FD, multisets, . . .)

CHR (Constraint Handling Rules) (early 1990’s)
Allows multisets of goals in rule heads
An expressive multiset rewriting language
Many applications (esp. constraint solvers)
Lacks reaction control mechanisms such as termination
detection and hierarchies

FJWCP-11
Models and languages
with multisets and symmetric join

Petri Nets (1962)
Production Systems and RETE match
Graph transformation formalisms
CCS, CSP
Concurrent logic/constraint programming
Linda
Linear Logic languages
Interaction Net
Chemical Abstract Machine, reflexive CHAM, Join Calculus
Gamma model
Constraint Handling Rules
Mobile ambients
P-system, membrane computing
Amorphous computing
Bigraphical reactive system (2001)

FJWCP-12

Example 2: N-to-1 stream communication

{ i(X0), o(Y0), $p[|*Z])}, c(A,X,X0) :-
c(A,Y,Y0), { i(X), o(Y), $p[|*Z]}

i oX0
Y0

X

A

membrane

FJWCP-13

Example 2: N-to-1 stream communication

{ i(X0), o(Y0), $p[|*Z])}, c(A,X,X0) :-
c(A,Y,Y0), { i(X), o(Y), $p[|*Z]}

i o
Y0

X

The number of free links in { } remain unchanged

Y

A

membrane

FJWCP-14

Elements of LMNtal (1)

1. Nodes (= atoms) with links
Links are linear, zero-assignment logical
variables

linear = occurring twice (1-to-1 comm.)
logical = link identity changes after message
sending (π-calculus)
zero-assignment = not instantiated (logic
programming)
private
not directed (cf. chemical bonds)

Links of a node are ordered

FJWCP-15

Elements of LMNtal (1)

Links are used
(a) to represent (private) communication

channels
(b) to represent data structures (= graphs)
(c) to find partners in multiset rewriting

O(1) if linked
can be O(n) if not linked

(d) to represent hyperlinks (using membranes;
see next slide)

FJWCP-16

2. First-class multisets (using membranes)
Not many languages feature multisets as
first-class citizens
Used for :

representing records (feature structures)
localization and logical management of
computation

cf. ambients, join calculus, Unix processes

Elements of LMNtal (2)

FJWCP-17

Elements of LMNtal (3)

3. Rewrite rules

Can be put in a membrane to realize
local reaction
process mobility

Design issue: proper handling of free links
cf. graph grammars and transformation,
logic programming

FJWCP-18

Syntax: preliminaries

Two presupposed syntactic categories:

X : links (or link variables)
In concrete syntax, start with capital letters

p : names (including numbers)
In concrete syntax, use identifiers different
from links

The name “=” (called a connector) is the only
reserved symbol in LMNtal

FJWCP-19

Syntax of LMNtal processes

P ::= 0 (null)
| p(X1, . . . ,Xm) (m≥0) (atom)
| P, P (molecule)
| { P } (cell)
| T :- T (rule)

Link condition: Each link in P (except those in
reaction rules) occurs at most twice.

Free link of P = link occurring only once
P is closed = has no free links

Not in
Flat LMNtal

FJWCP-20

Syntax of LMNtal process templates

T ::= 0 (null)
| p(X1,...,Xm) (m≥0) (atom)
| T, T (molecule)
| { T } (cell)
| T :- T (rule)
| @p (rule context)
| $p[X1,...,Xm|A] (m≥0) (process context)
| p(*X1,...,*Xm) (m > 0) (aggregate)

(residual args) A ::= [] (empty)
| *X (bundle)

Not in
Flat LMNtal

FJWCP-21

Process contexts, examples

{exch, $a[X,Y]} :- {$a[Y,X]}

{kill, $a[|*X]} :- killed(*X)

exch

kill
killed killed

FJWCP-22

Process contexts, examples

cp(S,S1,S2), {i(S),$p[|*P]} :-
{i(S1),$p[|*P1]},
{i(S2),$p[|*P2]},
cp(*P,*P1,*P2)

icp
a

b
c

i
a

b
c

a

b
ci

cp

cp

FJWCP-23

Syntactic sugar

c(A1,X1,X0), c(A2,X2,X1), c(A3,X3,X2), n(X3)

≡ c(A1,c(A2,c(A3,n)),X0)

≡ X0=Y, c(A1,c(A2,c(A3,n)),Y)

≡ X0=c(A1,c(A2,c(A3,n)))

FJWCP-24

Structural congruence (≡)
(E1) 0, P ≡ P
(E2) P, Q ≡ Q, P
(E3) P, (Q, R) ≡ (P, Q), R
(E4) P ≡ P[Y/X] if X is a local link of P
(E5) P ≡ P ’ P, Q ≡ P ’, Q
(E6) P ≡ P ’ {P } ≡ {P ’ }
(E7) X = X ≡ 0
(E8) X = Y ≡ Y = X
(E9) X = Y, P ≡ P[Y/X]

if P is an atom and X is a free link of P
(E10) { X = Y, P } ≡ { P }, X = Y

if X is a free link of P and Y is not a free link of P

FJWCP-25

Reduction semantics

P → P ’
P, Q → P ’, Q

P → P ’
{ P } → { P ’ }

Q ≡ P P → P ’ P ’ ≡ Q ’
Q → Q ’

(R3)

(R1) (R2)

{X=Y, P } → X=Y, { P }(R4)

X=Y, { P } → {X=Y, P }(R5)
X and Y are free links of P

X and Y are free links of (X=Y, P)

Tθ, (T :-U) → Uθ, (T :-U) (R6)

θ is to instantiate pro-
cess & rule variables.
Links are matched
using α -conversion.

FJWCP-26

Reduction semantics

Can p(A,A) be reduced using p(X,Y) :- q(Y,X) ?

The rule can’t be α-converted to the form
p(A,A) :- ...
However, because p(A,A) is equivalent to
p(A,B), A=B (B a fresh link), it can be reduced
as:

p(A,A)
≡ p(A,B), A=B

q(B,A), A=B
≡ q(A,A)

FJWCP-27

Example 3: circular data structures

Bidirectional circular buffer:

b(S,Ln,L0), n(A1,L0,L1), ..., n(An,Ln-1,Ln)

S acts as an interface link
left(S1,S), n(A,L0,L1), b(S,L1,L2) :-

b(S1,L0,L1), n(A,L1,L2)
right(S1,S), b(S,L0,L1), n(A,L1,L2) :-

n(A,L0,L1), b(S1,L1,L2)
put(A,S1,S), b(S,L0,L2) :-

n(A,L0,L1), b(S1,L1,L2)

cf. Shape Types

b
nn

nn
n

right
S

L2
L1

AL0

S1

FJWCP-28

Example 4: asynchronous π-calculus

s

X X

dd

g

d

X

d

d

X

d

Y Y

Z
Y Y

FJWCP-29

Example 5: map function

is lambda abstraction

c

nm

f

i o

i o

m

f

n

i o

f

c m

i o

FJWCP-30

Extension: termination detection

Syntax, expanded

P ::= ... | { P }/ (quiet cell)
T ::= ... | { T }/ (quiet cell)

Structural congruence, expanded

{P } ≡ {P }/ if P →

An irreducible cell can show the flag “/”
Irreducibility of a cell can only be checked
from outside the cell

FJWCP-31

Future Work

Language
Constructs for distributed and real-time computing

Foundations
Type systems
Theory of computational resources
Human-oriented program verification

Implementation
Optimizing complation of sequential core
Parallel and distributed implementation
Interoperability
Integration with static analysis

“Theory meets practice, logic meets physics.”

FJWCP-32

Conclusions

The “four elements” of LMNtal are:
(logical) links,
multisets/membranes,
(nested) nodes, and
transformation.

Inspired by communication using logical
variables, we have designed a simple language
model for the unified treatment of processes,
messages and data.

