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Today’s talk

Algebraic tools for exact(symbolic) solutions of various
constraints

(1) Grobner bases in polynomial rings
- over complex numbers(algebraically closed fields)
» over sets(boolean rings, Von Neumann regular rings)

(2) More advanced tools
- Quantifier Eliminations
- Parametric Grobner bases



Contents of the talk

(1) Polynomial ideals and Grobner bases
- breaf introduction -

(2) Applications of Grobner bases in constraint solving
+ complex numbers and real numbers
- set constraints

(3) Polynomial constraints over real numbers
- Quantifier eliminations(QE) - breaf review -

- CAD(Cylindrical Algebraic Decomposition)

(4) Polynomial constraints with parameters
- CGB(Comprehensive Grobner Bases)

(5) Available Softwares



Polynomial ideals and Grobner bases

K|X]: a polynomial ring over a field K with variables

X=X,....X,

I= {7 (X)(f1(X)+ - +hg(X) fe(X)|hi(X) € K[X]}:
I is called a polynomial ideal generated by

polynomials f1(X),. .. ,_fk()_(). )
[ is denoted by I_d(fl(X), o fr(XD).
{f1(X),..., fr(X)} is called a basis of I.

Important fact

If 1d(f1(X), ..., fi(X)) = Id(g1(X), ..., gi(X)),

the systems of equations:

AlX) =0 91(X) = 0

f1(X) ~ 0 g1(X) 0

have the same solutions.



Example.

fl(s,x,y,2>:3*$2+2*y*2_2*x*8
fo(s,z,y,2) =T *xz—y*xs
fS(SafanaZ):ZE*y—Z—z*s
fals,z,y,2) = x> +y* + 2° — 1
91(3755;%2’):S—%*x—%*y*z_w*zﬁ

36717 . 4 131119 . 92
7590 *% — 7m0 *

ga(s,z,y,2) = 2° +y* + 2° — 1

g3(s,z,y, z) :x*y—%*z5+129—99§*23—%*2
ga(s, 2.y, 2) = ZE*Z%—y*ZQ—%*Z‘S—%*zg%—%*Z
g5(8, 2.y, 2) = y3+y*22—y—%*z5+%*z3—%*z
96(8,, Y, 2) :yz*z—%*zfﬂ—%*zg—%*z
97(37 LY, Z) — y*Zg—y*Z—%*ZG—F%*ZZL—%*ZQ
98(5, T,y, 2) = 27 — 1{83 * 2° + {jpp * 2° — g * 2

Id(f1, f2, f3, f1) = Id(91, 92, 93, 94, 95, 96-97, 98)



Grobner bases
A Grobner basis of an ideal [ is a basis of I which has

nice properties.

One of the most tmportant properties

Let G be a Grobner basis of an ideal I in a polynomial
ring K[X,Y] with variable X = X7,..., XjpandY =
Yi, ..., Y, with a term order such that X >>Y . Then
GNK[Y] becomes a Grobner basis of the ideal INKY]

in KY].



Example.

fl(s,x,y,2>:3*$2+2*y*2_2*x*8
fo(s,z,y,2) =T *xz—y*xs
fS(SafanaZ):ZE*y—Z—z*s
fals,z,y,2) = x> +y* + 2° — 1
91(3755;%2’):S—%*x—%*y*z_w*zﬁ

36717 . 4 131119 . 92
7590 *% — 7m0 *

ga(s,z,y,2) = 2° +y* + 2° — 1

g3(s,z,y, z) :x*y—%*z5+129—99§*23—%*2
ga(s, 2.y, 2) = ZE*Z%—y*ZQ—%*Z‘S—%*zg%—%*Z
g5(8, 2.y, 2) = y3+y*22—y—%*z5+%*z3—%*z
96(8,, Y, 2) :yz*z—%*zfﬂ—%*zg—%*z
97(37 LY, Z) — y*Zg—y*Z—%*ZG—F%*ZZL—%*ZQ
98(5, T,y, 2) = 27 — 1{83 * 2° + {jpp * 2° — g * 2

Id(f1, f2, f3, f1) = Id(91, 92, 93, 94, 95, 96-97, 98)

{91, 92, 93, 94. 95, 96, 97, g3 } 1s a Grobner basis of
Id(f1, fo, f3, f4) with a term order s > x >y > 2



Applications of Grobner bases
in constraint solving

1. Systems of polynomial equations over real numbers

and complex numbers.

Case 1: The system of polynomial equations has only
finite number of solutions over complex numbers.

We can solve it using Grobner bases as the previous ex-
ample for both of real numbers and complex numbers.

Key fact(Extension Theorem)

Let I be a polynomial ideal in a polynomial ring K[X, Y]
over an algebraically closed field K such that 7N K[Y]
is O-dimensional. Let @ be a solution of I N K[Y7], i.e.
f(a) = 0 for any polynomial f(Y) € I N K[Y]. Then
we can extend a to a whole solution of I, i.e. there ex-
ists b such that f(b,a) = 0 for any polynomial f(X,Y")
cl



Case 2: The system of polynomial equations has in-
finitely many solutions over complex numbers.

Extension Theorem does not hold.
We need further sophisticated tools.

(1) When we are interested in solutions over real
numbers, we need Quantifier Elimination.

(2) When we are interested in solutions over complex
numbers, we need Comprehensive Grobner bases.



2. Constraints over Sets and Elements

Important fact 1(Boolean Ring)
Let S be a class of sets.
Define the addition + and the multiplication - by

a+b=(aN~b)U("aNb)
a-b=anb
(" denotes the complement of x.)
Then S becomes a commutative ring with identity
1 = ‘the whole set” and 0 = ‘the empty set’. .S is called
a boolean ring of sets.

[mportant fact 2(Boolean Grobner Bases)

We can construct Grobner bases in polynomial rings
over boolean rings.



Important facts 3(Extension Theorem)

We can always exdend partial solutions to whole solu-
tions.

These facts enable us to have Set Constraint Solver
bases on boolean Grobner bases.



Computation example
unknown 24 set variables:
a,b,c,d,q,5a, 70,k kl, kh, ko, we, ma, ol, md, yn,nl,
n2,n3,n4, nd5, nb6,n7, ns
unknown 18 element variables:
xl,x2,x3, x4, x5, 26, 27, 28, 9, 10, y1, y2, y3, y4, yd,
Y6, Y7, ys

Our solver compute a boolean Grobner basis in the
polynomial ring
Sla,b,c,d, j,ja,jo, k, kl, kh, ko, we, ma, ol, md, yn,
nl,n2,n3,n4d, no,nb,n7,n8, xl, x2, x3, x4, x5,
x6, 27, 28,29, x10, y1, y2,y3, y4, y5, y6, y7, y8|.



Quantifier eliminations(QE)

Example 1.
IX(X?+Ax X +B=0) < A’ —4%xB >0

Example 2.

Solve the equation

Bx X +4%Y =124+ 2% X —7xY —5)2=0.
We can not apply Grobner bases computation for such
problems.

QE can handle such problems.
IX(B* X +4%xY — 12+ (2% X —T*y—15)>=0)



Example 3.

Compute the envelope of the family of circles
{(x —t)° + (y — t?)* — 4t € R}.

F=(x—t)>+(y—t)*—4
Z%F:—Q*(:c—t)—él*t*(y—tQ)

The envelope consists of all points (z, ) such that there
exists a real number ¢ such that F' = {%F =0



Comprehensive Grobner Bases(CGB)

Example
a* T+ y2 —1 =0
y3 — 1 = (
Id(a*z+y?—1,y° — 1) is not O-dimentional.
(Idlaxz+y?>—1,4° —1)NCla] = {0}.)
In this example a can be considered as a parameter.
We can not use a standard Grobner basis computation.

Definition

Let F' = {f1(A,X),..., fr(A, X)} be a set of polyno-
mials in K[A, X].

Aset G={q1(A,X),...,q(A,X)} of polynomials in
KA, X] is called a comprehensive Grobner basis of F
if {g1(a, X),...,g/(a, X)} becomes a Grobner basis of
Id(fi(a,X),..., fr(@, X)) for any elements a of K.




Widely used Softwares

(Grobner bases

- RISA/ASIR
http://www.arir.org

+ Singular
http://www.singular.uni-kl.de

Quantifier Elimination

- QEPCAD

(Quantifier Elimination by Partial Cylindrical
Algebraic Decomposition)

http: / /www.cs.usna.edu/ gepcad/B/QEPCAD.html
+ Mathematica(after version 5.0)

* Redlog in Reduce

Comprehensive Grobner bases

- CGB in Reduce



