An Efficient and Safe Framework for Handling Numerical Constraint Systems and for Solving Optimization Problems

最適化問題を解決する為の安全なサレームワーク

Michel RUEHER

(Joint work with Yahia LEBBAH and Claude MICHEL)

COPRIN PROJECT INRIA—I3S/CNRS
University of Nice — Sophia Antipolis

October 2004

Outline

- Motivations
- Safe use of linear relaxations : the QuadSolver experience
- Performance of the QuadSolver
- A global optimisation framework
- First experimentations
- Conclusion

Motivations

- ➤ A constraint is handled as a **black-box** by local consistencies (2B-filtering,BOX-filtering)
 - No way to catch the dependencies between constraints
 - Splitting is behind the success for small dimensions

- ➤ Higher consistencies (KB-filtering, Bound-filtering)
 - → visiting numerous combinations

QuadSolver

- > safe and rigorous linear relaxations
- ➤ a global constraint to handle a tight linear approximation of the constraint system (Simplex)
- ➤ local consistencies (2B, Box) and interval methods (Newton)

The Quad-filtering process

- ♦ Reformulation
 - capture the linear part of the problem
 - \rightarrow replace each non linear term by a new variable (eg x^2 by y_i)
- ♦ Linearisation/relaxation
 - > introduce redundant linear constraints
 - → tight approximations of the non-linear terms (RLT)
- \diamond Computing $\min(\mathbf{x}) = x_i$ and $\max(\mathbf{x}) = \overline{x_i}$ in LP

Linearisation of x^2

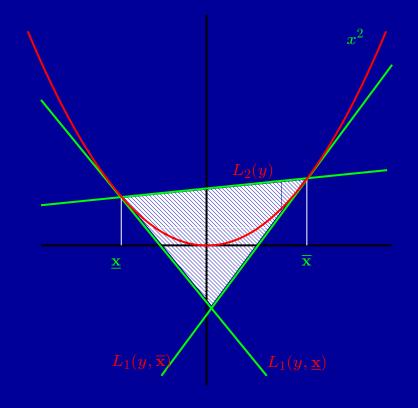
Example : relaxation of $y = x^2$ with $\mathbf{x} = [-4, 5]$

>
$$L_1(\alpha) \equiv y \ge 2\alpha x - \alpha^2$$

 $L_1(-4): y \ge -8x - 16$
 $L_1(5): y \ge 10x - 25$

$$L_2 \equiv y \le (\underline{x} + \overline{x})x - \underline{x} * \overline{x}$$

$$L_2 : y \le x + 20$$



Linearisation of x^2

 $f(x)=x^2$ with $\underline{x}\leq x\leq \overline{x}$ is approximated by :

$$L_1(\alpha) \equiv [(x - \alpha)^2 \ge 0]_l \text{ where } \alpha \in [\underline{x}, \overline{x}]$$
 (1)

$$L_2 \equiv (\underline{x} + \overline{x})x - y - \underline{x} * \overline{x} \ge 0 \tag{2}$$

- $[(x-\alpha_i)^2=0]_l$ generates the tangents to $y=x^2$ at $x=\alpha_i$ (QuadSolver only computes $L_1(\overline{x})$ and $L_1(\underline{x})$)
- $ullet L_1(\overline{x})$ and $L_1(\underline{x})$: underestimations of y L_2 : overestimation of y

The Quad filtering algorithm

Function Quad_filtering(IN: \mathcal{X} , \mathcal{D} , \mathcal{C} , ϵ) return \mathcal{D}'

- 1. Reformulation
 - \rightarrow linear inequalities $[\mathcal{C}]_R$ for the nonlinear terms in \mathcal{C}
- 2. Linearisation/relaxation of the whole system $[C]_L$
 - ightarrow a linear system $LR = [\mathcal{C}]_L \cup [\mathcal{C}]_R$
- 3. $\mathcal{D}' := \mathcal{D}$
- 4. Pruning:

While amount of reduction of some bound $> \epsilon$ and $\emptyset \not\in \mathcal{D}'$ Do

- (a) Update the coefficients of $[\mathcal{C}]_R$ according to \mathcal{D}'
- (b) Reduce the lower and upper bounds \underline{x}'_i and \overline{x}'_i of each initial variable $x_i \in \mathcal{X}$ (computing min and max of x_i subject to LR with a LP solver)

Issues in the use of linear relaxation

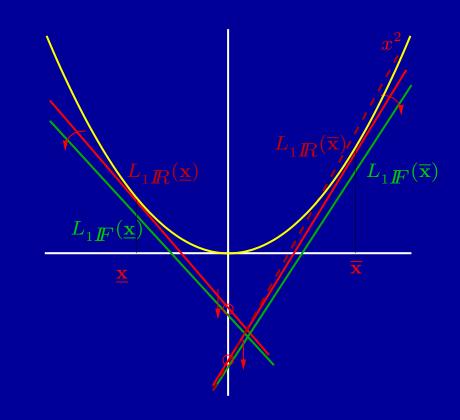
- Coefficients of linear relaxations are scalars
 - → computed with floating point numbers
- Efficient implementations of the simplex algorithm
 - → use floating point numbers
- ➤ All the computations with floating point numbers require *right corrections*

Safe approximations of L_1

$$L_1(\alpha) \equiv y \ge 2\alpha x - \alpha^2$$

Effects of rounding:

- \diamond rounding of 2α
 - \rightarrow rotations on $L_1(\alpha)$
- \diamond rounding of α^2
 - \rightarrow translation on y axis
- > intersection with x^2



Safe approximations of L_1

 $L_{1} \mathbb{F}(\alpha)$ approximations Let $\alpha \in \mathbb{F}$ and

$$L_{1} F(\alpha) \equiv \begin{cases} y - \lfloor 2\alpha \rfloor x + \lceil \alpha^2 \rceil \ge 0 & \text{iff } \alpha \ge 0 \\ y - \lceil 2\alpha \rceil x + \lceil \alpha^2 \rceil \ge 0 & \text{iff } \alpha < 0 \end{cases}$$

 $\forall x \in \mathbf{x}$, and $y \in [0, max\{\underline{\mathbf{x}}^2, \overline{\mathbf{x}}^2\}]$, if $L_1(\alpha)$ holds, then $L_1_{F}(\alpha)$ holds too

Generalisation to n-ary linearisations

Let
$$\sum_{i=1}^{n} a_i x_i + b \ge 0$$

then $\forall x_i \in \mathbf{x}_i$:

$$\sum_{i=1}^{n} \overline{a}_i x_i + \sup(\overline{b} + \sum_{i=1}^{n} \sup(\sup(\mathbf{a}_i \underline{x}_i) - \overline{a}_i \underline{x}_i)) \ge \sum_{i=1}^{n} a_i x_i + b \ge 0$$

Extensions:

- Borodaile and Van Hentenryck
- ➤ Hongthong and Kearfott

Correction of the Simplex algorithm

Consider the following LP:

minimise $c^T x$

subject to $\underline{\mathbf{b}} \leq Ax \leq \overline{\mathbf{b}}$

- Solution = vector $x_{\mathbb{R}} \in \mathbb{R}^n$
- CPLEX computes a vector $x_{I\!\!F} \in I\!\!F^n \neq x_{I\!\!R}$.
- $x_{I\!\!F}$ is safe for the objective if $c^Tx_{I\!\!P} \ge c^Tx_{I\!\!F}$.
- Neumaier and Shcherbina
 - → cheap method to obtain a rigorous bound of the objective
 - → rigorous computation of the certificate of infeasibility

Performance of the QuadSolver

			QuadSolver		IlogSolver (Box)		Realpaver
Name	n	δ	Ksplits	T(s)	Ksplits	T(s)	T(s)
assur44	8	3	0.1	49.5	15.8	72.5	72.6
katsura5	6	2	0.1	9.9	8.2	12.7	6.7
katsura6	7	2	0.5	121.9	136.6	281.4	191.8
kin2	8	2	0.0	6.2	3.5	19.3	2.6
tangents2	6	2	0.1	17.5	14.1	27.9	16.5
camera1s	6	2	1.0	28.9	11820.3		_
didrit	9	2	0.1	14.7	51.3	132.9	94.6
geneig	6	3	0.8	39.1	290.7	868.6	475.6
kinema	9	2	0.2	19.9	244.0	572.4	268.4
katsura7	8	2	1.7	686.9	1858.5	11104.1	4671.1
lee	9	2	0.5	43.3	8286.3	_	_
reimer5	5	6	0.1	53.0	2230.2	2892.5	733.9
stewgou40	9	4	1.6	924.0	3128.6		_
yama194	16	3	0.0	11.1	1842.1	_	_
yama195	60	3	0.0	106.1	19.6		_
yama196	30	1	0.0	6.7	816.7	_	_

A global optimisation framework

We consider the continuous global optimisation problem \mathcal{P}

minimise
$$f(X)$$

subject to $g_i(X) = 0, \quad i = 1..k$
 $g_j(X) \le 0, \quad j = k+1..m$ (3)

with $X \in \mathbf{X}$; $f: \mathbb{R}^n \to \mathbb{R}$ and $g_{1...m}: \mathbb{R}^n \to \mathbb{R}$. Functions f and $g_{1...m}$ are continuously differentiable on \mathbf{X} , where \mathbf{X} denotes a vector of intervals of \mathbb{R} .

Trends in global optimisation

♦ Performance

Most successful systems (Baron, α BB, . . .) use linear relaxations \rightarrow complete methods, but **not rigorous**

⋄ Rigour

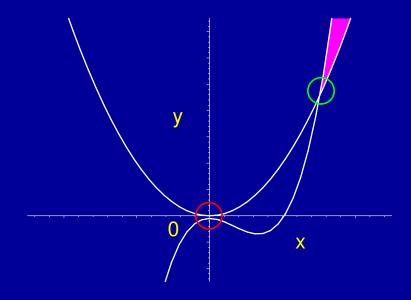
Mainly rely on interval computation
... available systems (e.g., Globsol) are rather slow

Challenge: to combine the advantages of both approaches in an efficient and rigorous global optimisation framework

Example of flaw due to a lack of rigour

Consider the following optimisation problem:

$$\begin{array}{ll} \min & x \\ \text{s. t.} & y-x^2 \geq 0 \\ & y-x^2*(x-2)+10^{-5} \leq 0 \\ & x,y \in [-10,+10] \end{array}$$



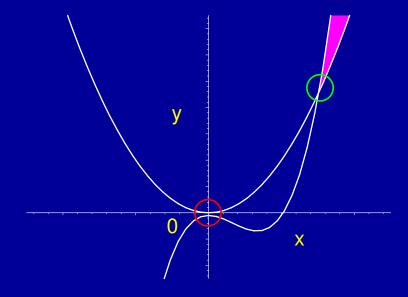
Baron 7.2 finds 0 as the minimum . . .

Example of flaw due to a lack of rigour

Consider the following optimisation problem:

min
$$x$$

s. t. $y-x^2 \ge 0$
 $y-x^2*(x-2)+10^{-5} \le 0$
 $x,y \in [-10,+10]$



Baron 7.2 finds 0 as the minimum . . . QuadOpt

- → lower bound of the objective function is 2.96
- \rightarrow upper bound of the objective at the feasible point (3,9) is 3.00

From QuadSolver to global optimisation

QuadSolver offers a safe and efficient framework to solve non-linear constraint systems

- > Switch to global optimisation
 - \rightarrow Add constraint $\mathbf{f}^* = f(X)$
- > Key of success
 - → Adapt the search tree

General schema of the QuadOpt solver

```
Algorithm QuadOpt(IN \mathcal{P}, \epsilon; OUT \mathcal{S}, \mathbf{f}^*)
Use QuadSolver to reduce (\mathcal{D}, \mathbf{f}^*)
\mathcal{L} := \mathcal{D} \; \; ; \; \; S := \emptyset
while w(\mathbf{f}^*) > \epsilon do
              LB := \mathbf{LowerBound}(\mathcal{P}, [f^*, m(\mathbf{f}^*)])
              (UB, F_p) := \mathsf{UpperBox}(\mathcal{P}, [LB, m(\mathbf{f}^*)], \mathcal{L})
              if [LB, UB] = \emptyset
                    then f^* := m(\mathbf{f}^*) ; \mathcal{L} := \mathcal{D}
                    else \overline{\mathbf{f}^*} := [LB, UB] ; \mathcal{S} := \mathcal{S} \cup \{F_n\}
              endif
endwhile
```

- > use of QuadSolver
 - \rightarrow safe bound
- > "light" version of QuadSolver
 - \rightarrow linear relaxations (RLT) + 2B-consistency

Applied to $f(X) \wedge g_{1..m}(X)$

Computing the upper box

- > to find a box that contains at least one solution
 - local search: interior point algorithm (COIN-IPOPT), sequential quadratic programming
 - → to find a "candidate" solution quickly
 - existence proof: Hansen's heuristic (separation of active and inactive constraints to obtain a square linear system, Gauss Seidel iteration to test feasibility)
 - specific search tree process
 - → to update "promising" boxes

Computing the upper box (2)

```
Algorithm UpperBox (IN: \mathcal{P}, \mathbf{D}_{Obj}; INOUT: \mathcal{L}; OUT: (UB, \mathcal{S}))
S:=\emptyset; MayBe := False;
while S = \emptyset \land \mathcal{L} \neq \emptyset do
   select and remove some D' from \mathcal{L}
   \mathbf{D}'' := Prune(\mathbf{D}')
   if \mathbf{D}'' \neq \emptyset then
              if w(\mathbf{D''}) < \epsilon then ProveFeasible(\mathbf{D''}, S,MayBe);
              else if LocalFind(\mathbf{D}'', \mathcal{L}_{\mathcal{FP}}) then ProveFeasible(\mathcal{L}_{\mathcal{FP}}, \mathcal{S}, MayBe)
                   else split(\mathbf{D}'', \{\mathbf{D}_1, \mathbf{D}_2\}); \mathcal{L} := \mathcal{L} \cup \{\mathbf{D}_1, \mathbf{D}_2\}; endif
              endif
   endif
endwhile
if S = \emptyset then if MayBe then return (\overline{\mathbf{D}_{Obi}}, \emptyset) else return (-\infty, \emptyset)
else return (\mathbf{f}(S), S) endif
```

Experimentations (1)

		Qua	d0pt	GLOBSOL	
Name	(n,m)	Safe	T(s)	Safe	T(s)
TP16	(2,2)	*	0.03	*	0.03
TP220	(2,1)	*	0.02	*	0.06
TP265	(4,2)	*	0.03	_	8.51
TP33	(3,2)	*	0.1	*	0.08
TP54	(6,1)	*	0.7	*	0.47
TP55	(6,6)	*	0.49	_	1.64
Murtagh	(5,3)	*	5.35	*	4.69
Audet140a	(5,4)	*	0.24	*	4.50
Audet140b	(4,2)	*	0.18	*	0.18
Audet141	(6,4)	*	0.55	*	2.52
Audet145	(7,8)		30.65	*	48.57

Experimentations (2)

		Quad0pt		BARON	
Name	(n,m)	Safe	T(s)	Safe	T(s)
TP16	(2,2)	*	0.03	?	0.02
TP220	(2,1)	*	0.02	?	0.00
TP265	(4,2)	*	0.03	?	0.02
TP33	(3,2)	*	0.1	?	0.03
TP54	(6,1)	*	0.7	?	0.04
TP55	(6,6)	*	0.49	?	0.02
Murtagh	(5,3)	*	5.35	?	0.39
Audet140a	(5,4)	*	0.24	?	0.06
Audet140b	(4,2)	*	0.18	?	0.04
Audet141	(6,4)	*	0.55	?	0.12
Audet145	(7,8)	_	30.65	?	0.10

Conclusion and future works

- > Contribution: a new safe and efficient framework
- Future works
 - ... improve performances