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What is control theory ?




1 Constraints for control



1.1 Set inversion

When the CSP can be written as

f(x) € [y],x € [x] CR",[y] C R™

One can get an inner and an outer set for the solution
set

S=f"Hly)nxl.

(Set demo, Proj2d)



1.2 Equilibrium points

Sailing boat

(& = v cos 0,
?_j = vsinf — BV,
_9 w,
51) — uy,

< 59 = u2,
5 — fvsindy—fgsin 5g—oszu,
- (d—7y cos 57))]0”1}9 cos 5gfg—a9w’
fo = ay(Vcos(0+ dy) —vsindy),

fg = agU sin dyg.



Equilibrium points should satisfy
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This CSP has no solution.



1.3

Calibration and state estimation




1.4 Topology for robotics



2 Constraint propagation
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Extend the class of constraints that can be projected
in a polynomial time (i.e., global constraints 7). For
instance, the constraint

A Z 0 where A c Mn,n

can be projected in o(n®®). The constraint

C(an,...,ag) : (ans”™ 4+ -+ a1s + ag unstable)

can be projected in o(n?).



What about

Rot(A), A =exp(B), A=B.C,

where A € Mun, B € Mpn, Ce Mppn?

What about the constraint

ans" + -+ + ay1s + ag stable ?



3 Confidence regions

Consider a function f(p) positive for all p € R", such
as Jrn f(DP)dp is finite and a real number o € [0, 1].
Characterize the set S, defined by

() Sa = f([sa;+ool),
Jrn f(P)dp

The set Sy is the confidence region associated with the

unnormalized pdf f.

It corresponds to the smallest set which contains p with
a probability equal to a.



Example : Consider a random variable p, described by
the unnormalized pdf:

2
f(p) = exp (—%) :

2

/OO exp (—%) dp = /2,

Since,

—O0
Finding its confidence region Sg g5 amounts to solving

(i) Sq.05 = f*([sa, +ool),
(i) 5= Js, £ (P)dp = 0.95.
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4 Intervals

A lattice (€, <) is a partially ordered set, closed under
least upper and greatest lower bounds.

The least upper bound (join) of x and y is written zVy.
The greatest lower bound (meet) is written = A y.

A lattice £ is complete if for all subsets A of £, VA
and AA belong to £.



An interval [x] of a complete lattice £ is a subset of £
which satisfies

[z] ={x €& | N[zx] <z < V][x]}.

Both @ and &€ are intervals of &.



The sets [0, 1] and [0, oo] are intervals of R.
The set {2,3,4,5} = [2, 5] is an interval of N.
The set {4,6,8,10} = [4,10],5 is an interval of 2N.

The set [1,2] x[3,4]) = [(1,3), (2, 4)]g2 is an interval
of R?.



5 Interval subpavings

A paving Q of R™ is a set of nonoverlapping boxes
covering R™.




A subpaving of Q is a subset of Q.




The support {IC} C R"™ of a subpaving K is the union
of all boxes of IC.




If P(Q) denotes the set of all subpavings of Q then
(P(Q), C) is a complete lattice.

e The least upper bound is the union:

IC1V Ky =K1 UK.

e The greatest lower bound is the intersection

IC1 A K =K1 N KCo.

As a consequence intervals of (P(Q),C) can be de-
fined.



An interval subpaving [KC™,KT] of Q can be repre-
sented by pair of subpavings of Q such that X~ C K.




Definition:

selk, ke {k}csc{kt}.



6 Interval staircase functions

A staircase function f associated with a paving Q is a
function from Q to R.




The set of all staircase functions (F, <) is a complete

lattice. Interval staircase functions can thus be defined

[1,2]5 [1,8] [9,12]

"""" 2,91 [4.P]
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| | |
________ [2,3] Loy [1,2]

[3.4]




A function f from R"™ — IR is said to belong to the
interval staircase function [f] if

v[p] € Q,¥p < [p], F(p) € [F~([P]), /" ([p])]-

An interval staircase function for f : R™ — R can be
obtained by using interval techniques.



The reciprocal image of the interval [s—,sT] € IR by
the interval staircase function [f] = [f~, f1] is the
interval subpaving of Q defined by

17 1(s—,sT]) £ H[p] c Q| [fl(Ip]) C [8—78+]} _
{el € QI AR N 15,571 # 0]



Theorem

If f belongs to [f], then for all [s—,sT] € IR,

FHs™sM ) e (0T8T



If [IC_, IC+] is an interval subpaving of Q and if [f] is
a positive interval staircase function, the integral of [f]

over [/C_, /Cﬂ is

Jre @YD 2| ST F (1)) volume([p])

[plek—

S~ f([p])-volume([p])

[pleCt



Theorem
If f € [fland if S € [K,K1], then

Jf@dpe [ [fe)dp



7 Algorithm



Equation in sy to be solved

Jf=1(fsa.00D) £ (P)4P
Jrn f(P)dp
The function h(s) is decreasing. Moreover,

a = h(sq) 2

f[f]—l([syoo[)[f](P)dP

) ) A




Thus

(a) a<Ib([h](s7)) =s <sa
(b) a > ub([h](sT)) = sT > sq

1“ h(s) /[h](5_>




. Take a paving Q of R"?; s~ := +o00; s :=0;

. Compute an interval staircase function [f] enclos-
ing f;

. Decrease s~ until a < Ib([h](s7))

. Increase sT until o > ub([h](sT));

- Ka kg = (1= 157, s 1) 7H([0, o).



Theorem : After completion of this algorithm, we have

Sa € [K&,K&L] and sq € [s7,sT].



8 Application to Bayesian estima-

tion

Model:

y(t) = p1sin(pat) + n(t)

where n(t) is a white normal random signal with:

1 n?
) = TP 202

where the standard deviation is o = %




Sampling times and data:

t = (1,2,3),
y = (0.8, 1.0, 0.2)".
Therefore
Y1 p1sin(p2) n
y2 | = | p1sin(2p2) | + | n2

Y3 p1sin(3p2) n3
\V/ \ 7 N -

y $(p) i

g




Since n(t) is white,

mn(n) = 7Tn("lll)-777%(712)-77771("’&3)
= exp(—2n?%) exp(—2n3) exp(—2n3).

(var)’

1f

door[_g,g] (pl)'door[oﬁ] (p2)

7"'prior(p) — Y



The posterior unnormalized pdf for p:

3
f(p) = (H exp(—2 (yx — p1 Sin(kpz))2))

k=1
.dOOI’[_2’2] (pl).door[076] (pz).



f(p17p2>




o

Ko, K| for o € {0,0.2,0.4,0.6,0.8,1};

&




