
Constraint Solvers for
Graphical User Interface
Applications

Hiroshi Hosobe

National Institute of Informatics

Background and Related Work

10/27/2004 FJCP Workshop 3

Constraints in Graphical User
Interface (GUI) Applications

Specify graphical layouts of objects.

Automatically maintained by a constraint
solver.

Constraints:
•The vertical distances between
parents and children are equal
•The intervals of neighboring
leaves are equal
•Subtrees sharing the same
parents are adjacent
•Etc.

10/27/2004 FJCP Workshop 4

History of Constraint-Based
GUI Applications

SketchPad [Sutherland ’63]

Pioneer

ThingLab [Borning TOPLAS’81]
[Borning & Duisberg TOG’86]

Provided modern graphical interfaces.

ThingLab II [Maloney et al. OOPSLA’89]

Introduced constraint hierarchies.

10/27/2004 FJCP Workshop 5

Constraint Hierarchies
[Borning et al. OOPSLA’87]

A framework of soft constraints.

Associate constraints with preferences
called strengths.

Strengths are often symbolically
expressed as required, strong, medium,
or weak.

Process inconsistencies among constraints.
Intuitively, satisfy as many strong
constraints as possible.

Ex. Hierarchy: strong x = 0, weak x = 1
→ Solution: x = 0

10/27/2004 FJCP Workshop 6

Constraint Hierarchies (contd.)
Comparator: A criterion to process inconsistencies
among equal-strength constraints

least-squares-better
Minimizes the sum of squares of constraint violations
(least-squares method).
Ex. strong x = y, weak x = 0, weak y = 2

→ Solution: x = 1, y = 1

weighted-sum-better
Minimizes the sum of constraint violations.

locally-predicate-better/locally-error-better
Minimizes constraint violations in an arbitrary order.

10/27/2004 FJCP Workshop 7

Constraint Solvers for
GUI Applications

Software that maintains and solves
constraints.

Usually implemented as class libraries.

Provide application programming interfaces:
Add new constraints.
Remove existing constraints.
Change variable values (typically to move
graphical objects).

10/27/2004 FJCP Workshop 8

DeltaBlue
[Freeman-Benson et al. CACM’90]

An early constraint hierarchy solver.
Incrementally solves hierarchies of local propagation constraints
using locally-predicate-better.

Similar to the bipartite graph matching algorithm.

Reports an error when it finds cyclic dependencies among
constraints.

Cannot handle simultaneous constraints.

x
required
x + y = z

y

strong x = 1

weak y = 2
z

Sol.
x = 1,
y = 2,
z = 3

x
required
x + y = z

y

strong x = 1

weak y = 2
z

Sol.
x = 1,
y = 3,
z = 4

medium
z = 4
Added

10/27/2004 FJCP Workshop 9

Cassowary
[Borning et al. UIST’97]

Incrementally solves hierarchies of linear equality/
inequality constraints using weighted-sum-better.

Converts a constraint hierarchy into an optimization
problem.

Uses the simplex method.

Still one of the most popular solvers.

required x = y
strong y + 1 = z
weak x = 0
weak z = 3

minimize wstrong|e1| + wweak|e2|
+ wweak|e3|

subject to
x = y
y + 1 = z + e1
x = 0 + e2
z = 3 + e3

Our Research

10/27/2004 FJCP Workshop 11

DETAIL [PPCP’94, CP96]
A graph-based algorithm that extends
DeltaBlue

“Generalized local propagation”

First local propagation algorithm that can
handle, e.g., least-squares-better.

10/27/2004 FJCP Workshop 12

DETAIL (contd.)
Decomposes a constraint graph into
“constraint cells.”

Generates a solution that respects the
constraint hierarchy.

t u

v w

y

x z

required
t = 1

weak
t = u

weak
v = 0

strong
t + v = w

weak
w = x

required
x + 1 = y

strong
x + y = z

medium
z = 7

3 7

4

1 2

1 1

10/27/2004 FJCP Workshop 13

HiRise [CP2000]
Maintains hierarchies of linear equality/inequality
constraints.

Solves thousands of constraints in real time.

10/27/2004 FJCP Workshop 14

Algorithm of HiRise
Consists of two parts:

Equality constraint processing
Classifies constraints into active and inactive
ones.
Creates LU decomposition of active constraints.
Done incrementally.

Inequality constraint processing
Adjusts the results of equality constraint
processing to inequalities.
Based on the simplex method.

10/27/2004 FJCP Workshop 15

Chorus [UIST2001]
Processes nonlinear geometric constraints:

Euclid geometric constraints (parallelism,
perpendicularity, etc.)
Nonoverlap constraints
Graph layout constraints

10/27/2004 FJCP Workshop 16

Basic Framework of Chorus
Represents constraints as error functions.

Converts constraint hierarchies as
optimization problems.

Defines an objective function as a sum of
“weighted” constraint errors.
Represents constraint strengths as real-
valued weights

Approximately computes least-squares-
better solutions.

10/27/2004 FJCP Workshop 17

Algorithm of Chorus
Consists of four parts:

Preprocessing required linear equality constraints to
eliminate variables

Local search by nonlinear numerical optimization
Typically using a quasi-Newton method

Global search with a genetic algorithm
To obtain better solutions in a global sense

Modifying constraint hierarchies
To cope with interactive operations and
animation

10/27/2004 FJCP Workshop 18

Module Mechanism of Chorus
Enables extension and modification of the
solver.

Evaluation modules
Calculates constraint errors.
Allows adding new kinds of constraints.

Optimization modules
Performs numerical optimization.
Allows replacing optimization methods.

10/27/2004 FJCP Workshop 19

Chorus3D [Smart Graphics 2002]
3D version of the Chorus constraint solver.

Supports hierarchies of coordinate systems in
scene graphs.

Applicable to geometric layout, constrained
dragging, and inverse kinematics.

Assumes Web3D technologies (e.g., Java 3D and
VRML) as its applications

10/27/2004 FJCP Workshop 20

Processing Coordinate
Transformations

Model:
Each 3D point variable is associated with a local coordinate
system.
Each coordinate transformation expresses its parameters as
constrainable variables.
Each 3D geometric constraint

Refers to 3D point variables.
Defined as an “error function” and its gradient which uses world
coordinates of 3D point variables.

The solver provides a mechanism which embeds coordinate
transformations in constraint error functions.

Transforms error functions and their gradients into the form
using local coordinates and coordinate transformation parameters.

10/27/2004 FJCP Workshop 21

Sample Program:
The Robot Arm Application

s = new C3Solver();
shldrTTfm = new C3TranslateTransform(new C3Domain3D(0, .1, 0));
s.add(shldrTTfm);
shldrRTfm = new C3RotateTransform(

new C3Domain3D(0, 1, 0), new C3Domain(-10000, 10000));
s.add(shldrRTfm, shldrTTfm);
uarmTTfm = new C3TranslateTransform(new C3Domain3D(0, .1, 0));
s.add(uarmTTfm, shldrRTfm);
uarmRTfm = new C3RotateTransform(

new C3Domain3D(0, 0, 1), new C3Domain(-1.57, 1.57));
s.add(uarmRTfm, uarmTTfm);
farmTTfm = new C3TranslateTransform(new C3Domain3D(0, .5, 0));
s.add(farmTTfm, uarmRTfm);
farmRTfm = new C3RotateTransform(

new C3Domain3D(0, 0, 1), new C3Domain(-3.14, 0));
s.add(farmRTfm, farmTTfm);
handPos = new C3Variable3D(farmRTfm, new C3Domain3D(0, .5, 0));
editHandPos = new C3EditConstraint(handPos, C3.MEDIUM);
s.add(editHandPos);
editHandPos.set(getTargetWorldCoordinates());
s.solve();
double shldrAngle = shldrRTfm.rotationAngle().value();
double uarmAngle = uarmRTfm.rotationAngle().value();
double farmAngle = farmRTfm.rotationAngle().value();

specify a
constraint
system

suggest
the
target’s
position

get the
solutions

solve the
system

construct
a solver

10/27/2004 FJCP Workshop 22

Limitation of Chorus
Local optimal solutions are computed
approximately.

To realize constraint strengths, it naively
optimizes the sum of weighted squares of
constraint violations.

It cannot use sufficiently distinct weights.

Resulting object layouts are different from correct
ones, usually by several pixels.

Hierarchy: strong x = 0, medium x = 100

Computed solution: x = 3.0303···

10/27/2004 FJCP Workshop 23

A New Algorithm for Hierarchies of
Nonlinear Constraints [SAC2004]

Reformulates a constraint hierarchy as a

weighted least-squares problem.

Performs weighted nonlinear least squares

by using a Gauss-Newton method

Using the weighted linear least squares

based on hierarchical QR decomposition.

10/27/2004 FJCP Workshop 24

Reformulation of
Constraint Hierarchies
Uses weighted least-squares problems:

Variables: x = (x1, x2, …, xn)

Strengths: 0 (strongest), 1, …, l (weakest)
Constraints: fk,j(x) = 0 (j-th constraint with strength k)
σ : positive real parameter to represent strengths

The limits of solutions as σ → ∞ are equal to least-
squares-better solutions of the original hierarchy

Unless there is inconsistency among constraints with strength 0.

∑∑
= =

−
l

k

m

j
jk

kl
k

f
0 1

2
,)(

2

1
min x

x
σ

10/27/2004 FJCP Workshop 25

Algorithm
Weighted nonlinear least squares based on the

Gauss-Newton method [Gulliksson et al. ’97]

Repeatedly solves linear least squares:

W = diag(σlIm0, σl−1Im1, …, Iml)

f = (f0,1, …, f0,m0, f1,1, …, f1,m1, ,…, fl,1, …, fl,ml)

J : Jacobian matrix of f

Proceeds to the next step by letting xk+1 = xk + αk pk .

αk : steplength

{ } 22/1)()(
2

1
min kkkJW

k

xfpx
p

+

10/27/2004 FJCP Workshop 26

Algorithm (contd.)
Linear least squares using hierarchical QR decomposition

Based on modified QR decomposition
[Gulliksson & Wedin ’92].

Π : permutation matrix (for column pivoting)
R : upper triangular matrix

Obtains solutions corresponding to their limits as σ → ∞.

Processes J ’s rows corresponding to constraints one by
one in the strength order.

Distributes violations of equal-strength constraints,
leaving weaker constraints for later transformation.









=Π

0

R
QJ

10/27/2004 FJCP Workshop 27

Experiment:
Solving Constraint Hierarchies (1)

Constrain a point (x, y), which is initially at (150, 150),
to be on a circle.

150

150

10022

=
=
=+

y

x

yx

weak

weak

required

< 10 msTime

1# of iterations

2.6 × 10−14Error

10/27/2004 FJCP Workshop 28

Experiment:
Solving Constraint Hierarchies (2)

Move (x, y) to (−90, 120), keeping the circular
positioning constraint.

1

1

22

120

90

100

yy

xx

y

x

yx

=
=
=

−=
=+

weak

weak

strong

strong

required

(x1 and y1 indicate previously
computed solutions)

< 10 msTime

13# of iterations

2.9 × 10−3Error

10/27/2004 FJCP Workshop 29

Conclusions
Constraints have been playing an important
role in the graphical interface field since its
infancy.

Constraint hierarchies have been often used
in graphical interface applications.

Research on solving hierarchies of nonlinear
constraints is still under way.

Applying another soft constraint approach
to graphical interface applications will be an
interesting future direction.

E.g. continuous soft constraints.

10/27/2004 FJCP Workshop 30

Thank you very much

