Rule-based Approach to Constraint
Programming

Krzysztof R. Apt

CWI, Amsterdam
University of Amsterdam
National University of Singapore

Underlying Thesisl

e At various levels of abstraction constraint
programming (CP) can be viewed as an
instance of rule-based programming,.

e At each level this view sheds light on the
essence of CP.

e At the highest level it allows us to bring
CP closer to the computation as de-
duction paradigm.

e At the lowest level it allows us to address
the issues of efficiency.

High Levell

Intuition

e CP is a mix of top-down search and con-
straint propagation.

e This yields specific search trees.

e We separate the issue of the tree genera-
tion from the search algorithm used.

(remember LP and Prolog?)

Search Trees

constraint propagation —
splitting —
constraint propagation —
splitting —
constraint propagation —

e The nodes in the tree are CSP’s.
e The root (level 0) is the original CSP.

e At the even levels the constraint propa-
gation is applied to the current CSP.

e At the odd levels splitting is applied to
the current CSP.

e the ‘union’ of the direct descendants of a
node is 'equivalent’ to it.

Search Algorithms: an Examplel

MODULE abstract_branch_and_bound;
PROCEDURE abstract_b_and_b(children: searchtree;
VAR sol: CSP; VAR bound: REAL);
BEGIN
WHILE children([P] <> {} DO
choose R from children([P]; % ‘splitting’
children[P] := children([P] - {R};
IF NOT failed(R) THEN
P := R;
IF solved(P) THEN
1F obj(P) > bound THEN
bound := obj(P);

sol :=P
END
ELSE
P := next(P); % constraint propagation

IF NOT failed(P) THEN

IF h(P) > bound THEN
abstract_b_and_b(children,sol,bound)

END

END

END
END
END
END abstract_b_and_b;

BEGIN

sol := NIL;
bound := -infinity;
P := next(Pinit); 7’ constraint propagation

IF NOT failed(P) THEN
abstract_b_and_b(children,sol,bound)

END
END abstract_branch_and_bound;

Back to Rule-based Approachl

Proof Theoretic Framework (Apt '98, "03).

e T'wo types of rules that transform CSP’s.

e Deterministic rules:

¢

(8
e Splitting rules:

¢
o A rule

¢

0

is equivalence preserving if ¢ and ¢ are
equivalent (have the same set of solutions).

¢

is equivalence preserving if the ‘union’
of 1;’s is equivalent to ¢.

e A rule

Rule Applicationsl

e Application of a deterministic rule:

replace in a CSP the part that matches the
premise by the conclusion.

e Relevant application of a deterministic
rule:

the outcome is a different CSP.

e A CSP P is closed under the applica-
tions of deterministic rule R if

— R cannot be applied to P
or

—no application of it to P is relevant.

Derivations]

Assumed: notions of failed and solved CSP’s.

Given: afinite set of proot deterministic rules.

e Derivation: a sequence of CSP’s s.t. each
is obtained from the previous one by an ap-
plication of a deterministic proot rule.

e A finite derivation is called

—successful: last element is a first solved
CSP in this derivation,

— failed: last element is a first failed CSP
in this derivation,

—stabilising: last element is a first CSP
closed under the applications of the proof
rules.

Computation TreeSI

e Application of a splitting rule
(informally): given

¢

replace ¢ by some ;.

e By allowing splitting rules in the derivations
we obtain computation trees.

Medium Level

Intuition

e When deterministic rules are of a known
form, derivations can be generated more
eficiently.

e These derivations correspond then to spe-
cific constraint propagation algorithms.

10

Example 1: Domain Reduction Rulesl

<C; x1€ Dy,...,xp € Dn>

(C': x1e€D},...,xzn € D)
where Dg C D; and C' is the restriction of C
to D},...,D/

Such a rule is monotonic if

smaller variable domains = smaller reductions.
Lemma Suppose each D;; is obtained from
D; using a combination of

e union and intersection operations,

e transposition and composition operations,

e join operation X,

e projection functions, and

e removal of an element.

Then the rule is monotonic.

Note This covers typical constraint solvers
(Boolean constraints, linear constraints over
integers, arithmetic constraints over reals, . . .).

11

Generic iteration algorithml

Monotonic domain reduction rules can be sched-
uled using a generic iteration algorithm
that computes the lct of a set of functions F'.

(Benhamou 96, Tellerman, Ushakov "96, Apt
'97, Fages et al. '98)

d:= 1;
G .=F;
WHILE G # () DO
choose g € G;
IF d # g(d) THEN
G = G Uupdate(G, g, d);

d = g(d)
ELSE
G :=G— {9}
END
END

where for all G, g, d

{feF-G|[f(d)=dA flg(d) # g(d)} C
update(G, g, d).

12

Example 2 : Arc Consistencyl

(' a constraint on x and y.
e ARC CONSISTENCY 1

(C'; v € Dg,y € Dy)
(C; v e D,y e Dy)
where D/, :={a € Dz | 3b € Dy (a,b) € C}
e ARC CONSISTENCY 2

(C; v € Dg,y € Dy)
(C; x € Dy, y € Dy))
where Dj, .= {b € Dy | Ja € Dy (a,b) € C}.

e Note These rules can be scheduled using

an improved generic iteration algorithm
(Apt '00) of which AC-3 is an instance.

e Crucial properties: commutativity and
idempotence.

13

Example 3 : Propagation Rulesl

(Apt, Brand '03, '05)
A general class of rules that includes

B

C

where B, C C A with A a set of given primi-
tive constraints.

Interpretation: it all constraints in B are
in the constraint store, then add to it all con-
straints in C.

14

Scheduling of Propagation RuleSI

e Propagation rules can be scheduled using a
more fine-tuned scheduler than the generic
1teration.

Crucial property: stability (generalization
of idempotence).

e During the computation this scheduler per-
manently removes some rules from the
initial set.

If after splitting we relaunch this scheduler,
we can disregard the removed functions.

This leads to an additional gain.

e Special case of propagation rules: mem-
bership rules (Apt, Monfroy '99, '01).

e On membership rules this scheduler performs
substantially better than the CHR scheduler.

15

Low Level

Membership rules:

(Ciy1€81,..,yp € Sp,z1 €Dyyy.. ., 2m € Dy)

Shorthand:
Y1 € 51, .., Yp €S — 21 F ay, ..., 2m F am.

Example: Three valued logic of Kleene '52.
Consider and3(x, y, 2):

t fu
tit fu
fifff

uufu

oy € {u, f} — z #tis a valid (equivalence
preserving) membership rule.

e There are 18 minimal valid membership rules.

16

Generating Valid Membership Rulesl

e (Apt, Monfroy '99, '01):
Given a fnite constraint all minimal valid

membership rules can be generated.

e These rules define hyper-arc consistency

(GAQ).

e S0 the fine-tuned scheduler applied to these
rules is a hyper-arc consistency algo-
rithm.

e (Brand ’03, Brand, Apt '05):
A rule r is redundant if the least common
fixpoint is the same with r removed.

One can remove from the set of generated
valid rules the redundant ones.

17

Scheduling of Membership Rules:
a Summary

e For finite domain constraints all valid mem-
bership rules can be automatically gener-

ated (implemented in ECL'PS¢ by E. Mon-
froy).

e Redundant rules can be removed (imple-
mented in ECL'PS® by S. Brand).

e A fine-tuned scheduler can be used to sched-
ule the rules.

e This scheduler allows us to remove perma-
nently some rules: useful during the top-
down search.

18

Example I

Consider and11(z,y, z) (used in ATPG) with
a randomized labeling.

e Generated minimal valid membership rules:
4656.

After removing redundant rules: 393.

e Computation times:

Fine-tuned | Generic | CHR
1874 3321 7615

e Computation times after removing redun-
dant rules:

Fine-tuned | Generic | CHR
157 316 543

19

Conclusions|

e Rule-based programming provides useful in-
sights into CP.

e At the high level it allows us to stress
relations between CP and the computation
as deduction paradigm.

e At the medium level we can focus on ef-
ficient scheduling of specific rules.

e At the low level specific rules can be au-
tomatically generated, optimized and sched-
uled in a customized way.

e A challenge: use this framework to de-
scribe syntax-based complete constraint solvers:

— (Gaussian elimination,
— Gauss—Jordan Elimination,
— Martelli-Montanari unification algorithm,

— optimized versions of Fourier elimination.

e Needed: a language to describe the order
of rule applications.

20

