
Rule-based Approach to Constraint

Programming

Krzysztof R. Apt

CWI, Amsterdam

University of Amsterdam

National University of Singapore

Underlying Thesis

•At various levels of abstraction constraint

programming (CP) can be viewed as an
instance of rule-based programming.

•At each level this view sheds light on the
essence of CP.

•At the highest level it allows us to bring
CP closer to the computation as de-

duction paradigm.

•At the lowest level it allows us to address
the issues of efficiency.

1

High Level

Intuition

•CP is a mix of top-down search and con-
straint propagation.

•This yields specific search trees.

•We separate the issue of the tree genera-

tion from the search algorithm used.

(remember LP and Prolog?)

2

Search Trees

constraint propagation

constraint propagation

splitting

constraint propagation

splitting

•The nodes in the tree are CSP’s.

•The root (level 0) is the original CSP.

•At the even levels the constraint propa-

gation is applied to the current CSP.

•At the odd levels splitting is applied to
the current CSP.

• the ‘union’ of the direct descendants of a
node is ’equivalent’ to it.

3

Search Algorithms: an Example

MODULE abstract_branch_and_bound;

PROCEDURE abstract_b_and_b(children: searchtree;

VAR sol: CSP; VAR bound: REAL);

BEGIN

WHILE children[P] <> {} DO

choose R from children[P]; % ‘splitting’

children[P] := children[P] - {R};

IF NOT failed(R) THEN

P := R;

IF solved(P) THEN

IF obj(P) > bound THEN

bound := obj(P);

sol := P

END

ELSE

P := next(P); % constraint propagation

IF NOT failed(P) THEN

IF h(P) > bound THEN

abstract_b_and_b(children,sol,bound)

END

END

END

END

END

END abstract_b_and_b;

4

BEGIN

sol := NIL;

bound := -infinity;

P := next(Pinit); % constraint propagation

IF NOT failed(P) THEN

abstract_b_and_b(children,sol,bound)

END

END abstract_branch_and_bound;

5

Back to Rule-based Approach

Proof Theoretic Framework (Apt ’98, ’03).

•Two types of rules that transform CSP’s.

•Deterministic rules:
φ

ψ

• Splitting rules:

φ

ψ1 | . . . | ψn

•A rule
φ

ψ

is equivalence preserving if φ and ψ are
equivalent (have the same set of solutions).

•A rule
φ

ψ1 | . . . | ψn
is equivalence preserving if the ‘union’
of ψi’s is equivalent to φ.

6

Rule Applications

•Application of a deterministic rule:

replace in a CSP the part that matches the
premise by the conclusion.

•Relevant application of a deterministic
rule:

the outcome is a different CSP.

•A CSP P is closed under the applica-

tions of deterministic rule R if

–R cannot be applied to P

or

– no application of it to P is relevant.

7

Derivations

Assumed: notions of failed and solved CSP’s.

Given: a finite set of proof deterministic rules.

•Derivation: a sequence of CSP’s s.t. each
is obtained from the previous one by an ap-
plication of a deterministic proof rule.

•A finite derivation is called

– successful: last element is a first solved
CSP in this derivation,

– failed: last element is a first failed CSP
in this derivation,

– stabilising: last element is a first CSP
closed under the applications of the proof
rules.

8

Computation Trees

•Application of a splitting rule

(informally): given

φ

ψ1 | . . . | ψn

replace φ by some ψi.

• By allowing splitting rules in the derivations
we obtain computation trees.

9

Medium Level

Intuition

•When deterministic rules are of a known

form, derivations can be generated more
efficiently.

•These derivations correspond then to spe-
cific constraint propagation algorithms.

10

Example 1: Domain Reduction Rules

〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉

〈C′ ; x1 ∈ D′
1, . . ., xn ∈ D′

n〉

where D′
i ⊆Di and C′ is the restriction of C

to D′
1, . . ., D

′
n.

Such a rule is monotonic if

smaller variable domains ⇒ smaller reductions.

Lemma Suppose each D′
i is obtained from

Di using a combination of

• union and intersection operations,

• transposition and composition operations,

• join operation 1,

• projection functions, and

• removal of an element.

Then the rule is monotonic.

Note This covers typical constraint solvers
(Boolean constraints, linear constraints over
integers, arithmetic constraints over reals, . . .).

11

Generic iteration algorithm

Monotonic domain reduction rules can be sched-
uled using a generic iteration algorithm

that computes the lcf of a set of functions F .

(Benhamou ’96, Tellerman, Ushakov ’96, Apt
’97, Fages et al. ’98)

d := ⊥;
G := F ;
WHILE G 6= ∅ DO

choose g ∈ G;
IF d 6= g(d) THEN
G := G ∪ update(G, g, d);
d := g(d)

ELSE

G := G− {g}
END

END

where for all G, g, d

{f ∈ F −G | f (d) = d ∧ f (g(d)) 6= g(d)} ⊆

update(G, g, d).

12

Example 2 : Arc Consistency

C: a constraint on x and y.

•ARC CONSISTENCY 1

〈C ; x ∈ Dx, y ∈ Dy〉

〈C ; x ∈ D′
x, y ∈ Dy〉

whereD′
x := {a ∈ Dx | ∃ b ∈ Dy (a, b) ∈ C}

•ARC CONSISTENCY 2

〈C ; x ∈ Dx, y ∈ Dy〉

〈C ; x ∈ Dx, y ∈ D′
y〉

whereD′
y := {b ∈ Dy | ∃ a ∈ Dx (a, b) ∈ C}.

•Note These rules can be scheduled using
an improved generic iteration algorithm
(Apt ’00) of which AC-3 is an instance.

•Crucial properties: commutativity and
idempotence.

13

Example 3 : Propagation Rules

(Apt, Brand ’03, ’05)

A general class of rules that includes

B

C

where B,C ⊆A with A a set of given primi-
tive constraints.

Interpretation: if all constraints in B are
in the constraint store, then add to it all con-
straints in C.

14

Scheduling of Propagation Rules

• Propagation rules can be scheduled using a
more fine-tuned scheduler than the generic
iteration.

Crucial property: stability (generalization
of idempotence).

•During the computation this scheduler per-

manently removes some rules from the
initial set.

If after splitting we relaunch this scheduler,
we can disregard the removed functions.

This leads to an additional gain.

• Special case of propagation rules: mem-

bership rules (Apt, Monfroy ’99, ’01).

•On membership rules this scheduler performs
substantially better than the CHR scheduler.

15

Low Level

Membership rules:

〈C ; y1 ∈ S1, . . ., yk ∈ Sk, z1 ∈ Dz1, . . ., zm ∈ Dzm〉

〈C ; z1 ∈ Dz1 − {a1}, . . ., zm ∈ Dzm − {am}〉

Shorthand:

y1 ∈ S1, . . ., yk ∈ Sk → z1 6= a1, . . ., zm 6= am.

Example: Three valued logic of Kleene ’52.
Consider and3(x, y, z):

t f u
t t f u
f f f f
u u f u

• y ∈ {u, f}→ z 6= t is a valid (equivalence
preserving) membership rule.

•There are 18 minimal valid membership rules.

16

Generating Valid Membership Rules

• (Apt, Monfroy ’99, ’01):

Given a finite constraint all minimal valid
membership rules can be generated.

•These rules define hyper-arc consistency

(GAC).

• So the fine-tuned scheduler applied to these
rules is a hyper-arc consistency algo-

rithm.

• (Brand ’03, Brand, Apt ’05):

A rule r is redundant if the least common
fixpoint is the same with r removed.

One can remove from the set of generated
valid rules the redundant ones.

17

Scheduling of Membership Rules:

a Summary

• For finite domain constraints all valid mem-
bership rules can be automatically gener-
ated (implemented in ECLiPSe by E. Mon-
froy).

•Redundant rules can be removed (imple-
mented in ECLiPSe by S. Brand).

•A fine-tuned scheduler can be used to sched-
ule the rules.

•This scheduler allows us to remove perma-
nently some rules: useful during the top-
down search.

18

Example

Consider and11(x, y, z) (used in ATPG) with
a randomized labeling.

•Generated minimal valid membership rules:
4656.

After removing redundant rules: 393.

•Computation times:

Fine-tuned Generic CHR
1874 3321 7615

•Computation times after removing redun-
dant rules:

Fine-tuned Generic CHR
157 316 543

19

Conclusions

•Rule-based programming provides useful in-
sights into CP.

•At the high level it allows us to stress
relations between CP and the computation
as deduction paradigm.

•At the medium level we can focus on ef-
ficient scheduling of specific rules.

•At the low level specific rules can be au-
tomatically generated, optimized and sched-
uled in a customized way.

•A challenge: use this framework to de-
scribe syntax-based complete constraint solvers:

– Gaussian elimination,

– Gauss–Jordan Elimination,

– Martelli-Montanari unification algorithm,

– optimized versions of Fourier elimination.

•Needed: a language to describe the order
of rule applications.

20

